Abstract
Motivated by the recent success of integer programming based procedures for computing discrete forecast horizons, we consider two-product variants of the classical dynamic lot-size model. In the first variant, we impose a warehouse capacity constraint on the total ending inventory of the two products in any period. In the second variant, the two products have both individual and joint setup costs for production. To our knowledge, there are no known procedures for computing forecast horizons for these variants. Under the assumption that future demands are discrete, we characterize forecast horizons for these two variants as feasibility/optimality questions in 0–1 mixed integer programs. A detailed computational study establishes the effectiveness of our approach and enables us to gain valuable insights into the behavior of minimal forecast horizons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.