Abstract

Our work aims at developing or expliciting bridges between Bayesian networks (BNs) and Natural Exponential Families, by proposing discrete exponential Bayesian networks as a generalization of usual discrete ones. We introduce a family of prior distributions which generalizes the Dirichlet prior applied on discrete Bayesian networks, and then we determine the overall posterior distribution. Subsequently, we develop the Bayesian estimators of the parameters, and a new score function that extends the Bayesian Dirichlet score for BN structure learning. Our goal is to determine empirically in which contexts some of our discrete exponential BNs (Poisson deBNs) can be an effective alternative to usual BNs for density estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.