Abstract

This research paper presents an investigation into the shear behavior of binary mixtures composed of cubic and spherical particles, employing the discrete element method (DEM) through triaxial tests simulations. A range of binary particle samples with varying volume fractions of cubic and spherical particles is generated for analysis. The study primarily focuses on examining the contracting-dilatancy relationship of binary granular material samples by scrutinizing deviatoric stress and volumetric strain curves, while considering the influence of confining pressure, initial porosity, and particle size ratio. Furthermore, the paper sheds light on the evolution of microstructures during the shearing process by presenting coordination numbers and rotational velocity fields for different particle types (overall particles, cubic particles, spherical particles), as well as between cubic-spherical particles. The findings demonstrate the substantial impact of both the volume fraction of cubic particles and the particle size ratio on the shear behavior of binary particles at both macroscopic and microscopic scales. Additionally, a comprehensive investigation reveals the dependence of anisotropy in normal contact forces, tangent contact forces, and contact orientations on the volume fraction of cubic particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call