Abstract
The paper investigates reproducing the effects of confining pressure on the behaviour of scaled railway ballast in triaxial tests in discrete element models (DEM). Previous DEM work, using a standard Hertzian elastic contact law with an elastic–perfectly plastic tangential slip model, has been unable to replicate the behaviour observed in laboratory tests across a range of confining pressures without altering both the material stiffness and the inter-particle friction. A new contact law modelling damage at the contacts between particles is introduced. Particle contact is via spherically-capped conical asperities, which reduce in height if over-stressed. This introduces plasticity to the behaviour normal to the contact surface. In addition, the inter-particle friction angle is varied as a function of normalized contact normal force. At relatively low normal forces the friction angle must be increased for peak mobilized friction angles to match the laboratory data, an effect that is attributed to interlocking at the scale of surface roughness. Simulation results show close agreement with laboratory data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.