Abstract

A model has been developed to investigate the three-dimensional media motion during the vibratory finishing processes. This work presents a vibratory finishing machine model using a discrete element method (DEM) that calculates the media interactive normal and tangential contact forces among the media particles. The DEM model predicts the dynamic motion of individual particles inside the vibratory machine container based on Hertzian contact mechanics. The influence of contact parameters such as contact stiffness, friction and damping on media motion has been investigated to determine the critical operating parameters for the vibratory finishing process. The simulation results have been validated with experimental data. This model provides an understanding of vibratory finishing process fundamentals, guidelines for vibratory finishing machine design and optimal operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.