Abstract
We present a discrete-element method (DEM) model to simulate the mechanical behavior of sea ice in response to ocean waves. The interaction of ocean waves and sea ice potentially can lead to the fracture and fragmentation of sea ice depending on the wave amplitude and period. The fracture behavior of sea ice explicitly is modeled by a DEM method where sea ice is modeled by densely packed spherical particles with finite sizes. These particles are bonded together at their contact points through mechanical bonds that can sustain both tensile and compressive forces and moments. Fracturing naturally can be represented by the sequential breaking of mechanical bonds. For a given amplitude and period of incident ocean waves, the model provides information for the spatial distribution and time evolution of stress and microfractures and the fragment size distribution. We demonstrate that the fraction of broken bonds α increases with increasing wave amplitude. In contrast, the ice fragment size l decreases with increasing amplitude. This information is important for the understanding of the breakup of individual ice floes and floe fragment size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.