Abstract

SummaryIn the absence of initial cracks, the material behavior is limited by its strength, usually defined in homogeneous conditions (of stress and strain). Beyond this limit, in quasi‐brittle case, cracks may propagate and the material behavior tends to be well described by fracture mechanics. Discrete element approaches show consistent results dealing with this transition during rupture. However, the calibration of the parameters of the numerical models (i.e., stiffness, strength, and toughness) may be quite complex and sometimes only approximative. Based on a brittle rupture criterion, we analyze the biaxial response of uncracked samples. Thus, tensile and compressive strengths are analytically identified and become direct parameters of our discrete model. Furthermore, a physically reliable crack initiation (and subsequent propagation) is shown to be induced during rupture and verified by the simulation of three‐point bending and diametral compression tests. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call