Abstract

Microbially induced calcite precipitation (MICP) has emerged as a novel soil improvement method. In this paper, 3-D discrete element method (DEM) simulations are used to explore the behavior of MICP-cemented sands. Comparisons of the macro-scale response of numerical and physical specimens are made. Microstructure analyses indicate a shear band formed in the numerical specimens, consistent with physical experiments. The bond breakage pattern in numerical specimens is explored and compared to observed measurements from physical specimens. The relationship between dilatancy and stress-strain behavior is evaluated. The results indicate DEM is an effective technique to capture the mechanical behavior of MICP-cemented sand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.