Abstract
This research presents a discrete element method (DEM) model for simulating the vibratory filling of the Idaho calcine waste simulant into various convoluted hot isostatic pressing canisters. The simulation closely emulates the experimental vibratory powder-filling processes, achieving accurate representations of surface profiles and powder bed heights. Notably, the model underestimates lower fill levels but demonstrates improved accuracy at higher levels due to diminished air influence. Executed on a consumer-grade desktop PC, the DEM model replicates tapped powder bed heights to within millimeters, proving its capability to efficiently simulate commercial-scale bulk material handling processes using standard computing hardware.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.