Abstract
PurposeThe purpose of this paper is to use the discrete element method (DEM) to model the fracture behaviour of brittle materials in 2D.Design/methodology/approachThe material consists of a set of particles in contact with a close‐packed structure. It allows the derivation of an expression for the stress intensity factor as a function of the contact forces near the crack tip. A classical failure criterion, based on the material's toughness, is then adopted for the analysis of crack propagation, represented by the contact loss between particles.FindingsThe DEM approach is compared to two tensile cases (mode I); both presenting a monotonous convergence towards classical solutions for more precise discretization.Originality/valueThe paper proposes a DEM approach in fracture mechanics of isotropic brittle materials entirely compatible with continuous classical theory. Hence the toughness value is directly introduced as a parameter of the material without any previous calibration of the DEM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.