Abstract

Finite element analysis (FEA) provides a powerful approach for estimating the in-vivo loading characteristics of the hip joint during various locomotory and functional activities. However, time-consuming procedures, such as the generation of high-quality FE meshes and setup of FE simulation, typically make the method impractical for rapid applications which could be used in clinical routine. Alternatively, discrete element analysis (DEA) has been developed to quantify mechanical conditions of the hip joint in a fraction of time compared to FEA. Although DEA has proven effective in the estimation of contact stresses and areas in various complex applications, it has not yet been well characterised by its ability to evaluate contact mechanics for the hip joint during gait cycle loading using data from several individuals. The objective of this work was to compare DEA modelling against well-established FEA for analysing contact mechanics of the hip joint during walking gait. Subject-specific models were generated from magnetic resonance images of the hip joints in five asymptomatic subjects. The DEA and FEA models were then simulated for 13 loading time-points extracted from a full gait cycle. Computationally, DEA was substantially more efficient compared to FEA (simulation times of seconds vs. hours). The DEA and FEA methods had similar predictions for contact pressure distribution for the hip joint during normal walking. In all 13 simulated loading time-points across five subjects, the maximum difference in average contact pressures between DEA and FEA was within ±0.06 MPa. Furthermore, the difference in contact area ratio computed using DEA and FEA was less than ±6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.