Abstract

Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet. The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A). The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]). The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1) moved relative to the passive stamp (2) at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B) shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015]. Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm) shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of detail in the analyses of the strain fields in each optical image, the selected area was covered with a uniform mesh (3.43×3.43 mm). In the zoomed-up images, the mesh was 32×32 pixels (a pixel of 0.107×0.107 mm). For each pair of optical images, we calculated cross-correlation functions of the intensity of pixels between pairs of the same size cells (Fig. 2). Directions and magnitudes of displacements of the cells were determined from displaced maximums of cross-correlation functions (

Highlights

  • For analyzing the emerging shear zone, we estimated transverse deformation in the marginal parts of two adjacent blocks within linear profiles

  • The model photos processing results show that under the load applied to the model, deformation in a large shear zone develops depending on two factors, the total displacement of the shear zone’s active wing and local fronts of deformation waves which regularly pass across the shear zone

  • While the shear zone’s internal structure is composed of small cracks (Fig. 4, A; Video), the local fronts of deformation waves come to this zone from the side of the active stamp and can freely transit it without changing the wave size and shape

Read more

Summary

ВВЕДЕНИЕ

Наблюдения за миграцией землетрясений вдоль зон активных разломов [Richter, 1958; Mogi, 1968] и последующие теоретические исследования [Elsasser, 1969] положили начало разработке проблемы медленных деформационных волн в литосфере. Представленных в работах [Bykov, 2005; Sherman, 2013, 2014], следует, что существует два основных типа деформационных волн [Kuz’min, 2012]. Внутриразломные деформационные волны ответственны за избирательную тектоническую и сейсмическую активизацию отдельных разломов в крупных разломных зонах. Как внутриразломные деформационные волны мигрируют по крупной разломной зоне, имеющей сложную внутреннюю структуру, представленную совокупностью разномасштабных разломов и блоков;. Как внутриразломные деформационные волны вызывают тектоническую и сейсмическую активизацию отдельных разломов в крупных разломных зонах. Положительный опыт его использования для изучения волновой динамики деформаций в зонах разломов представлен в работах [Bornyakov, Semenova, 2011; Bornyakov et al, 2014]. Для получения ответов на перечисленные выше вопросы авторами выполнено физическое моделирование процесса формирования сдвиговой зоны в упруговязкопластичной модели континентальной литосферы. Впервые экспериментально обнаружены деформационные волны в формирующейся сдвиговой зоне и показана связь с ними аномальных деформаций внутриразломных блоков. С этой точки зрения статья представляет новые данные, подтверждающие концепцию деформационных волн, и показывает особенности их динамики в зоне разлома

МЕТОДИКА МОДЕЛИРОВАНИЯ
МЕТОД ОБРАБОТКИ ФОТОМАТЕРИАЛОВ
РЕЗУЛЬТАТЫ
ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ ДИНАМИКА
БЛАГОДАРНОСТИ
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.