Abstract

This article introduces a new approach to discrete curvature based on the concept of effective resistances. We propose a curvature on the nodes and links of a graph and present the evidence for their interpretation as a curvature. Notably, we find a relation to a number of well-established discrete curvatures (Ollivier, Forman, combinatorial curvature) and show evidence for convergence to continuous curvature in the case of Euclidean random graphs. Being both efficient to approximate and highly amenable to theoretical analysis, these resistance curvatures have the potential to shed new light on the theory of discrete curvature and its many applications in mathematics, network science, data science and physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.