Abstract
The aim of the paper is to discuss the application of classification functions and artificial neural networks (such as multilayer perceptron and radial basis function) to recognize the risk category of investigated companies. The research is based on data from 295 enterprises that applied for credit in two regional banks operating in Poland. Each firm is described by 13 diagnostic variables and potential borrowers are classified into four classes. The efficiency of classification is evaluated in terms of classification errors calculated from the actual classification made by the credit officers. The results of the experiments show that application of artificial neural networks and classification functions can support the creditworthiness evaluation of borrowers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.