Abstract

Modelling real workforce choices accurately via Agent Based Models and System Dynamics requires input data on the actual preferences of individual agents. Often lack of data means that analysts can have an understanding of how agents move through the system, but not why, and when. Hybrid models incorporating discrete choice experiments (DCE) solve this. Unlike simplistic neoclassical economic models, DCEs build on 50 years of well-tested consumer theory that decomposes the utility (benefit) derived from the agent's preferred choice into that associated with its constituent parts, but also allows agents different degrees of certainty in their discrete choices (heteroscedasticity on the latent scale). We use DCE data in populating a System Dynamics/Agent Based Model -- one of choices of optometrists and their employers. It shows that low overall predictive power conceals heterogeneity in agents' preferences. Incorporating such preferences in our hybrid approach improves the model's explanatory power and accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.