Abstract

We study experimentally and numerically the existence and stability properties of discrete breathers in a periodic nonlinear electric line. The electric line is composed of single cell nodes, containing a varactor diode and an inductor, coupled together in a periodic ring configuration through inductors and driven uniformly by a harmonic external voltage source. A simple model for each cell is proposed by using a nonlinear form for the varactor characteristics through the current and capacitance dependence on the voltage. For an electrical line composed of 32 elements, we find the regions, in driver voltage and frequency, where n-peaked breather solutions exist and characterize their stability. The results are compared to experimental measurements with good quantitative agreement. We also examine the spontaneous formation of n-peaked breathers through modulational instability of the homogeneous steady state. The competition between different discrete breathers seeded by the modulational instability eventually leads to stationary n-peaked solutions whose precise locations is seen to sensitively depend on the initial conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.