Abstract

The paper gives discrete conditional integration by parts formula using a Malliavin calculus approach in discrete-time setting. Then the discrete Bismut formula is introduced for asymmetric random walk model and asymmetric exponential process. In particular, a new formula for delta hedging process is obtained as an extension of the Malliavin derivative representation of the delta where the conditional integration by parts formula plays a role in the proof.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.