Abstract
AbstractWe investigate subgroups of $\text{SL}(n,\mathbb{Z})$ which preserve an open nondegenerate convex cone in $\mathbb{R}^{n}$ and admit in that cone as fundamental domain a polyhedral cone of which some faces are allowed to lie on the boundary. Examples are arithmetic groups acting on self-dual cones, Weyl groups of certain Kac–Moody algebras, and they do occur in algebraic geometry as the automorphism groups of projective manifolds acting on their ample cones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.