Abstract

A mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. A more general approach is however provided by the integral equation for the so-called continuous time random walk (CTRW), which can be understood as a random walk subordinated to a renewal process. We show how this integral equation reduces to our fractional diffusion equations by a properly scaled passage to the limit of compressed waiting times and jumps. The essential assumption is that the probabilities for waiting times and jumps behave asymptotically like powers with negative exponents related to the orders of the fractional derivatives. Illustrating examples are given, numerical results and plots of simulations are displayed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.