Abstract

In this note we study the role of the Green function for the Laplacian in a compact Riemannian manifold as a tool for obtaining well-distributed points. In particular, we prove that a sequence of minimizers for the Green energy is asymptotically uniformly distributed. We pay special attention to the case of locally harmonic manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.