Abstract

Optimization processes based on “active models” play central roles in many areas of computational vision as well as computational geometry. Unfortunately, current models usually require highly complex and sophisticated mathematical machinery and at the same time they suffer from a number of limitations which impose restrictions on their applicability. In this paper a simple class of discrete active models, called migration processes (MPs), is presented. The processes are based on iterated averaging over neighborhoods defined by constant geodesic distance. It is demonstrated that the MP model-a system of self-organizing active particles—has a number of advantages over previous models, both parametric active models (“snakes”) and implicit (contour evolution) models. Due to the generality of the MP model, the process can be applied to derive natural solutions to a variety of optimization problems,including defining (minimal) surface patches given their boundary curves; finding shortest paths joining sets of points; and decomposing objects into “primitive” parts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.