Abstract

Estimating the discrepancy of the hypergraph of all arithmetic progressions in the set $[N]=\{1,2,\hdots,N\}$ was one of the famous open problems in combinatorial discrepancy theory for a long time. An extension of this classical hypergraph is the hypergraph of sums of $k$ ($k\geq 1$ fixed) arithmetic progressions. The hyperedges of this hypergraph are of the form $A_{1}+A_{2}+\hdots+A_{k}$ in $[N]$, where the $A_{i}$ are arithmetic progressions. For this hypergraph Hebbinghaus (2004) proved a lower bound of $\Omega(N^{k/(2k+2)})$. Note that the probabilistic method gives an upper bound of order $O((N\log N)^{1/2})$ for all fixed $k$. P\v{r}\'{i}v\v{e}tiv\'{y} improved the lower bound for all $k\geq 3$ to $\Omega(N^{1/2})$ in 2005. Thus, the case $k=2$ (hypergraph of sums of two arithmetic progressions) remained the only case with a large gap between the known upper and lower bound. We bridge his gap (up to a logarithmic factor) by proving a lower bound of order $\Omega(N^{1/2})$ for the discrepancy of the hypergraph of sums of two arithmetic progressions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.