Abstract
In this study, we tried to understand the difference in the mechanical properties (elastic modulus, E & hardness, H) values of CIGS compound semiconductors measured using the Berkovich indenter and the sharper cube corner and conical indenter. Adopted continuous stiffness measurement technique to characterize it along with the indentation depth. The depth was up to 1000 nm, and E and H values w ere obtained according to the depth. The projected contact area of the cube edge and the conical indenter was calculated assuming the two indenters had an ideal shape. In the case of the Berkovich indenter, which is the subject of comparison, both calculated values assuming an ideal shape and experimental values were used. Cube-corner and conical tip showed lower load at the same depth of 1000 nm compared to Berkovich indenter. This means that the same depth of indentation was achieved even at a low load, which could affect the value of the mechanical properties of the thin film. The cube-corner tip and the conical tip have a sharp shape with a projected contact area about 6 times smaller than that of the Berkovich tip. It was observed that not only the effect of grain boundaries of the microstructure of the CIGS thin film, but also the effect of reflecting the characteristics of the Mo substrate had a significant effect on the mechanical properties of the CIGS thin film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.