Abstract
Hopanoids methylated at the C-3 position are a subset of bacterial triterpenoids that are readily preserved in modern and ancient sediments and in petroleum. The production of 3-methylhopanoids by extant aerobic methanotrophs and their common occurrence in modern and fossil methane seep communities, in conjunction with carbon isotope analysis, has led to their use as biomarker proxies for aerobic methanotrophy. In addition, these lipids are also produced by aerobic acetic acid bacteria and, lacking carbon isotope analysis, are more generally used as indicators for aerobiosis in ancient ecosystems. However, recent genetic studies have brought into question our current understanding of the taxonomic diversity of methylhopanoid-producing bacteria and have highlighted that a proper interpretation of methylhopanes in the rock record requires a deeper understanding of their cellular function. In this study, we identified and deleted a gene, hpnR, required for methylation of hopanoids at the C-3 position in the obligate methanotroph Methylococcus capsulatus strain Bath. Bioinformatics analysis revealed that the taxonomic distribution of HpnR extends beyond methanotrophic and acetic acid bacteria. Phenotypic analysis of the M. capsulatus hpnR deletion mutant demonstrated a potential physiological role for 3-methylhopanoids; they appear to be required for the maintenance of intracytoplasmic membranes and cell survival in late stationary phase. Therefore, 3-methylhopanoids may prove more useful as proxies for specific environmental conditions encountered during stationary phase rather than a particular bacterial group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.