Abstract

For the potential therapy of Alzheimer's disease (AD), butyrylcholinesterase (BChE) has gradually gained worldwide interest in the progression of AD. This study used a pharmacophore-based virtual screening (VS) approach to identify Z32439948 as a new BChE inhibitor. Aiding by molecular docking and molecular dynamics, essential binding information was disclosed. Specifically, a subpocket was found and structure-guided design of a series of novel compounds was conducted. Derivatives were evaluated in vitro for cholinesterase inhibition and physicochemical properties (BBB, log P, and solubility). The investigation involved docking, molecular dynamics, enzyme kinetics, and surface plasmon resonance as well. The study highlighted compounds 27a (hBChE IC50 = 0.078 ± 0.03 μM) and (R)-37a (hBChE IC50 = 0.005 ± 0.001 μM) as the top-ranked BChE inhibitors. These compounds showed anti-inflammatory activity and no apparent cytotoxicity against the human neuroblastoma (SH-SY5Y) and mouse microglia (BV2) cell lines. The most active compounds exhibited the ability to improve cognition in both scopolamine- and Aβ1-42 peptide-induced cognitive deficit models. They can be promising lead compounds with potential implications for treating the late stage of AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.