Abstract

Signal transducer and activator of transcription 3 (STAT3) is an attractive target for cancer therapy. However, identifying potent and selective STAT3 small-molecule inhibitors with drug-like properties remains challenging. Based on a scaffold combination strategy, compounds with a novel N-(benzimidazol-5-yl)-1,3,4-thiadiazol-2-amine scaffold were designed and their inhibition of the interleukin-6 (IL-6)/JAK/STAT3 pathway was tested in HEK-Blue IL-6 reporter cells. After optimization of lead compound 12, compound 40 was identified as a selective STAT3 inhibitor that directly binds the SH2 domain to inhibit STAT3 phosphorylation, translocation, and downstream gene transcription. Compound 40 exhibited antiproliferative activities against STAT3-overactivated DU145 (IC50 value = 2.97 μM) and MDA-MB-231 (IC50 value = 3.26 μM) cancer cells and induced cell cycle arrest and apoptosis. In the DU145 xenograft model, compound 40 showed in vivo antitumor efficacy following intraperitoneal administration, with a tumor growth inhibition rate of 65.3% at 50 mg/kg, indicating promise for further development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.