Abstract

Applications of carbon nanotubes continue to advance, with substantial progress in nanotube electronics, conductive wires, and transparent conductors to name a few. However, wider application remains impeded by a lack of control over production of nanotubes with the desired purity, perfection, chirality, and number of walls. This is partly due to the fact that growth experiments are time-consuming, taking about 1 day per run, thus making it challenging to adequately explore the many parameters involved in growth. We endeavored to speed up the research process by automating CVD growth experimentation. The adaptive rapid experimentation and in situ spectroscopy CVD system described in this contribution conducts over 100 experiments in a single day, with automated control and in situ Raman characterization. Linear regression modeling was used to map regions of selectivity toward single-wall and multiwall carbon nanotube growth in the complex parameter space of the water-assisted CVD synthesis. This development of the automated rapid serial experimentation is a significant progress toward an autonomous closed-loop learning system: a Robot Scientist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.