Abstract

Plant diseases seriously affect the yield and quality of crops and are difficult to control. Tryptanthrin and its derivatives (tryptanthrins) were synthesized and evaluated for their antiviral activities and fungicidal activities. We found that tryptanthrins have good antiviral activities against tobacco mosaic virus (TMV) for the first time. Most of the tryptanthrins showed higher anti-TMV activities than that of ribavirin (inhibitory rates of 40, 37, and 38% at 500 μg/mL for inactivation, curative, and protection activities in vivo, respectively). Compound 3n (inhibitory rates of 52, 49, and 54% at 500 μg/mL for inactivation, curative, and protection activities in vivo, respectively) and compound 14 (inhibitory rates of 51, 48, and 53% at 500 μg/mL for inactivation, curative, and protection activities in vivo, respectively) emerged as new antiviral lead compounds with excellent antiviral activities. Compound 16 was selected for further antiviral mechanism research, which revealed that compound 16 could inhibit virus assembly by decomposing 20S coat protein (CP) disk. Molecular docking results showed that compounds 3n and 14, which have higher antiviral activities in vivo than that of compound 16, do show stronger interaction with TMV CP. Further fungicidal activity tests showed that tryptanthrins displayed broad-spectrum fungicidal activities, especially for compound 16. These compounds showed good selectivity to Physalospora piricola. In the current study, a small molecular library of tryptanthrin was constructed and the bioactivity spectrum of these compounds was broadened, which lays a foundation for their application in plant protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call