Abstract

BackgroundAlthough recent molecular phylogenetic studies have identified the photosynthetic relatives of several enigmatic holoparasitic angiosperms, uncertainty remains for the last parasitic plant order, Balanophorales, often considered to include two families, Balanophoraceae and Cynomoriaceae. The nonphotosynthetic (holoparasitic) flowering plant Cynomorium coccineum has long been known to the Muslim world as "tarthuth" and to Europeans as the "Maltese mushroom"; C. songaricum is known in Chinese medicine as "suo yang." Interest in these plants is increasing and they are being extensively collected from wild populations for use in herbal medicines.ResultsHere we report molecular phylogenetic analyses of nuclear ribosomal DNA and mitochondrial matR sequence data that strongly support the independent origin of Balanophoraceae and Cynomoriaceae. Analyses of single gene and combined gene data sets place Cynomorium in Saxifragales, possibly near Crassulaceae (stonecrop family). Balanophoraceae appear related to Santalales (sandalwood order), a position previously suggested from morphological characters that are often assumed to be convergent.ConclusionOur work shows that Cynomorium and Balanophoraceae are not closely related as indicated in all past and present classifications. Thus, morphological features, such as inflorescences bearing numerous highly reduced flowers, are convergent and were attained independently by these two holoparasite lineages. Given the widespread harvest of wild Cynomorium species for herbal medicines, we here raise conservation concerns and suggest that further molecular phylogenetic work is needed to identify its photosynthetic relatives. These relatives, which will be easier to cultivate, should then be examined for phytochemical activity purported to be present in the more sensitive Cynomorium.

Highlights

  • Recent molecular phylogenetic studies have identified the photosynthetic relatives of several enigmatic holoparasitic angiosperms, uncertainty remains for the last parasitic plant order, Balanophorales, often considered to include two families, Balanophoraceae and Cynomoriaceae

  • Attempts were made to precisely determine the sister taxon of Cynomorium within Saxifragales, a clade that has been subjected to extensive molecular phylogenetic work [15,16]

  • Molecular phylogenetic analyses using nuclear and mitochondrial gene sequences both indicate that these taxa are not closely related and that perceived similarities are a result of convergent evolution

Read more

Summary

Introduction

Recent molecular phylogenetic studies have identified the photosynthetic relatives of several enigmatic holoparasitic angiosperms, uncertainty remains for the last parasitic plant order, Balanophorales, often considered to include two families, Balanophoraceae and Cynomoriaceae. Molecular phylogenetics has expanded understanding of relationships among all major angiosperm groups and has thereby strongly impacted their classification [1] Such advances have included some nonphotosynthetic holoparasites whose phylogenetic positions had previously been uncertain, such as Hydnoraceae [2] and Rafflesiales [3]. Previous molecular phylogenetic work with such holoparasites highlighted the need to employ gene sequences from different subcellular compartments and analytical methods that accommodate rate heterogeneity, avoiding longbranch attraction artifacts [3] These steps are justified because congruence among different gene trees provides evidence that the organismal tree is being recovered, while incongruence suggests the presence of nonstandard processes such as introgression, lineage sorting, and horizontal gene transfer (HGT) [3,4,5,6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.