Abstract

ABSTRACTSpectral lag of the low-energy photons with respect to the high-energy ones is a common astrophysical phenomenon (such as gamma-ray bursts and the Crab Pulsar) and may serve as a key probe to the underlying radiation mechanism. However, spectral lag in keV range of the magnetar bursts has not been systematically studied yet. In this work, we perform a detailed spectral lag analysis with the Li et al.’s Cross-Correlation Function (Li-CCF) method for SGR J1935+2154 bursts observed by Insight-Hard X-ray Modulation Telescope (HXMT), Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor (GECAM), and Fermi/Gamma-ray Burst Monitor (GBM) from 2014 July to 2022 January. We discover that the spectral lags of about 61 per cent (non-zero significance >1σ) bursts from SGR J1935+2154 are linearly dependent on the photon energy (E) with tlag(E) = α(E/keV) + C, which may be explained by a linear change of the temperature of the blackbody-emitting plasma with time. The distribution of the slope (α) approximately follows a Gaussian function with mean and standard deviation of 0.02 ms keV−1 (i.e. high-energy photons arrive earlier) and 0.02 ms keV−1, respectively. We also find that the distribution can be well fitted with three Gaussians with mean values of ∼−10.009, 0.013, and 0.039 ms keV−1, which may correspond to different origins of the bursts. These spectral lag features may have important implications on the magnetar bursts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call