Abstract
The Mycobacterium tuberculosis extracellular zinc metalloprotease 1 (Zmp1) has been proposed to play a key role in phagosome maturation and to enhance the survival of Mycobacterium tuberculosis in the host. Consequently, small molecule inhibitors of Zmp1 are of pivotal importance as a tool to better understand the pathogenicity of Zmp1 and as lead candidates for pharmacological intervention. Here we combined in silico structure-based inhibitor design with biochemical studies to discover and characterize the first potent competitive Zmp1 inhibitor showing a Ki of 94nM and a high selectivity for Zmp1 with respect to human Neprilysin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.