Abstract

BackgroundMany agricultural and industrial food by-products are rich in cellulose and xylan. Their enzymatic degradation into monosaccharides is seen as a basis for the production of biofuels and bio-based chemicals. Lytic polysaccharide monooxygenases (LPMOs) constitute a group of recently discovered enzymes, classified as the auxiliary activity subgroups AA9, AA10, AA11 and AA13 in the CAZy database. LPMOs cleave cellulose, chitin, starch and β-(1 → 4)-linked substituted and non-substituted glucosyl units of hemicellulose under formation of oxidized gluco-oligosaccharides.ResultsHere, we demonstrate a new LPMO, obtained from Myceliophthora thermophila C1 (MtLPMO9A). This enzyme cleaves β-(1 → 4)-xylosyl bonds in xylan under formation of oxidized xylo-oligosaccharides, while it simultaneously cleaves β-(1 → 4)-glucosyl bonds in cellulose under formation of oxidized gluco-oligosaccharides. In particular, MtLPMO9A benefits from the strong interaction between low substituted linear xylan and cellulose. MtLPMO9A shows a strong synergistic effect with endoglucanase I (EGI) with a 16-fold higher release of detected oligosaccharides, compared to the oligosaccharides release of MtLPMO9A and EGI alone.ConclusionNow, for the first time, we demonstrate the activity of a lytic polysaccharide monooxygenase (MtLPMO9A) that shows oxidative cleavage of xylan in addition to cellulose. The ability of MtLPMO9A to cleave these rigid regions provides a new paradigm in the understanding of the degradation of xylan-coated cellulose. In addition, MtLPMO9A acts in strong synergism with endoglucanase I. The mode of action of MtLPMO9A is considered to be important for loosening the rigid xylan–cellulose polysaccharide matrix in plant biomass, enabling increased accessibility to the matrix for hydrolytic enzymes. This discovery provides new insights into how to boost plant biomass degradation by enzyme cocktails for biorefinery applications.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0284-1) contains supplementary material, which is available to authorized users.

Highlights

  • Many agricultural and industrial food by-products are rich in cellulose and xylan

  • Enzyme purity From the M. thermophila C1 genome, protein MtLPMO9A was predicted to be an lytic polysaccharide monooxygenases (LPMO) belonging to subfamily AA9 [21]

  • Since the addition of LPMOs to a cellulase cocktail was found to considerably increase the release of glucose from cellulose [28, 29], it was of interest to analyze the mode of action of MtLPMO9A in further detail

Read more

Summary

Introduction

Many agricultural and industrial food by-products are rich in cellulose and xylan. Their enzymatic degradation into monosaccharides is seen as a basis for the production of biofuels and bio-based chemicals. Cellulose is a homogeneous linear polymer of β-(1 → 4)-linked glucosyl units and, depending on the source, exceeding a degree of polymerization (DP) over 10.000 [6] These β-(1 → 4)-linked glucosyl chains form microfibrills via hydrogen bonds and van der Waals forces [7]. The hemicellulose structure differs between species of mono- and dicotyls and, depending on the source, can consist of a xylan, mannan, xyloglucan or β-glucan backbone [11,12,13,14,15,16] The majority of these backbones are composed of β-(1 → 3, 1 → 4)-linked xylosyl, β-(1 → 4)-linked mannosyl and β-(1 → 3, 1 → 4)-linked glucosyl residues, respectively. Degradation of cellulose-associated hemicelluloses is essential to improve the hydrolysis of cellulose present in the plant biomass

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.