Abstract

Recently the metastable 1T'-type VIB-group transition metal dichalcogenides (TMDs) have attracted extensive attention due to their rich and intriguing physical properties, including superconductivity, valleytronics physics, and topological physics. Here, a new layered WS2 dubbed "2M" WS2 , is constructed from 1T' WS2 monolayers, is synthesized. Its phase is defined as 2M based on the number of layers in each unit cell and the subordinate crystallographic system. Intrinsic superconductivity is observed in 2M WS2 with a transition temperature Tc of 8.8 K, which is the highest among TMDs not subject to any fine-tuning process. Furthermore, the electronic structure of 2M WS2 is found by Shubnikov-de Haas oscillations and first-principles calculations to have a strong anisotropy. In addition, topological surface states with a single Dirac cone, protected by topological invariant Z2 , are predicted through first-principles calculations. These findings reveal that the new 2M WS2 might be an interesting topological superconductor candidate from the VIB-group transition metal dichalcogenides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.