Abstract

Cathelicidin antimicrobial peptides have an extended and/or unstructured conformation in aqueous solutions but fold into ordered conformations, such as the α-helical structure, when interacting with cellular membranes. These structural transitions can be directly correlated to their antimicrobial activity and its underlying mechanisms. SMAP-18, the N-terminal segment (residues 1–18) of sheep cathelicidin (SMAP-29), is known to kill microorganisms by translocating across membranes and interacting with their nucleic acids. The amino acid sequence of SMAP-18 contains three Gly residues (at positions 2, 7, and 13) that significantly affect the flexibility of its peptide structure. This study investigated the role of Gly residues in the structure, membrane interaction, membrane translocation, and antimicrobial mechanisms of SMAP-18. Five analogs were designed and synthesized through Gly → Ala substitution (i.e., G2A, G7A, G13A, G7,13A, and G2,7,13A); these substitutions altered the helical content of SMAP-18 peptides. We found that G7,13A and G2,7,13A changed their mode of action, with circular dichroism and nuclear magnetic resonance studies revealing that these analogs changed the structure of SMAP-18 from a random coil to an α-helical structure. The results of this experiment suggest that the Gly residues at positions 7 and 13 in SMAP-18 are the structural and functional determinants that control its three-dimensional structure, strain-specific activity, and antimicrobial mechanism of action. These results provide valuable information for the design of novel peptide-based antibiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call