Abstract

A series of spirooxindole-ferrocene hybrids bearing five or four contiguous chiral centers were designed and synthesized via organocatalysis. In vitro protein binding and cellular proliferation assays suggested that compound 5d was the most potent mouse double minute 2 homolog (MDM2) inhibitor. In addition, mechanistic studies indicated that compound 5d suppressed MDM2-mediated p53 degradation, induced apoptosis and promoted oxidative damage. Molecular docking studies have suggested that 5d binds to MDM2 by mimicking the Trp23 and Leu26 residues of p53. This work can provide a basis for the development of novel multifunctional MDM2 inhibitors. The further exploration of more derivatives from this library and additional investigation of organocatalysis application in the development of new molecules may generate new potential lead compounds for cancer-targeted therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.