Abstract

The SABATH methyltransferases catalyze methylation of small-molecule metabolites, which participate in plant growth, development and defense response. Given lack of genome-wide studies on gymnosperms SABATH family, the formation and functional differentiation mechanism of the Larix kaempferi SABATH gene family was systematically and exhaustively explored by analyzing gene sequence characteristics, phylogenetic relationship, expression pattern, and enzyme activities. Phylogenetic analysis showed that 247 SABATH genes from 14 land plants were divided into 4 clades, and lineage-specific gene duplication events were important factors that contributed to the evolution of the SABATH gene family in gymnosperms and angiosperms. Substrate specificity analysis of 18 Larix SABATH proteins showed that LaSABATHs could catalyze O-methylation of indole-3-acetic acid (IAA) and farnesic acid (FA), N-methylation of theobromine, and S-methylation of thiobenzoic acid. Furthermore, only LaSABATH2 and LaSABATH29 could catalyze O-methylation of FA, and only LaSABATH30 could catalyze O-methylation of IAA. Homology modeling and molecular docking studies showed the hydrogen bond formed between the His188 of LaSABATH30 and IAA and the noticeable hydrophobic IAA-binding pocket may be helpful for IAA methylation. In this study, identification of proteins with significant specific catalytic activity toward FA and IAA provided high-quality candidate genes for forest genetics and breeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call