Abstract

Inhibition of the interaction between the PD-1 protein on activated lymphocytes and the PD-L1 protein on tumors represents a novel therapeutic approach for selective activation of the innate immune response against a variety of cancers. Therefore, the present study utilized a combined virtual and experimental screening approach to screen databases of both lead-like and larger molecules for identification of novel inhibitors of PD-1/PD-L1 interaction. First, high-throughput virtual screening of ∼3.7 million lead-like molecules using a rigid-receptor docking approach against both human PD-1 and PD-L1 proteins revealed possible small-molecule tractability of PD-1, but not PD-L1, binding interface. The subsequent work, therefore, involved screening of the National Cancer Institute (NCI) compound database against the PD-1 pocket. Several NCI compounds were identified with potential to bind to the PD-1 pocket and in turn inhibit the PD-1/PD-L1 interaction. The dynamic binding behavior of these molecules was further investigated using long 100 ns molecular dynamics (MD) stimulation revealing NSC631535 to be a potentially stable binder at PD-1 interface pocket. In support of these MD data, the experimental testing of NSC631535 exhibited 50% inhibition at ∼15 μM test concentration. The observed activity of this compound is promising as despite its relatively low molecular weight (415.5 g/mol) it is still capable of inhibiting the PD-1/PD-L1 interaction having a large interface area (∼1970 Å2). In summary, our integrated computational and experimental screening led to identification of a novel PD-1 antagonist that may serve as a starting point for further optimization into more potent small-molecule PD-1/PD-L1 inhibitors for cancer immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call