Abstract
The majority of released rye cultivars are susceptible to leaf rust because of a low level of resistance in the predominant hybrid rye-breeding gene pools Petkus and Carsten. To discover new sources of leaf rust resistance, we phenotyped a diverse panel of inbred lines from the less prevalent Gülzow germplasm using six distinct isolates of Puccinia recondita f. sp. secalis and found that 55 out of 92 lines were resistant to all isolates. By performing a genome-wide association study using 261,406 informative SNP markers, we identified five resistance-associated QTLs on chromosome arms 1RS, 1RL, 2RL, 5RL and 7RS. To identify candidate Puccinia recondita (Pr) resistance genes in these QTLs, we sequenced the rye nucleotide-binding leucine-rich repeat (NLR) intracellular immune receptor complement using a Triticeae NLR bait-library and PacBio® long-read single-molecule high-fidelity (HiFi) sequencing. Trait-genotype correlations across 10 resistant and 10 susceptible lines identified four candidate NLR-encoding Pr genes. One of these physically co-localized with molecular markers delimiting Pr3 on chromosome arm 1RS and the top-most resistance-associated QTL in the panel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.