Abstract
The voltage-gated sodium channel Nav1.7 is an attractive target for the treatment of pain based on the high level of target validation with genetic evidence linking Nav1.7 to pain in humans. Our effort to identify selective, CNS-penetrant Nav1.7 blockers with oral activity, improved selectivity, good drug-like properties, and safety led to the discovery of 2-substituted quinolines and quinolones as potent small molecule Nav1.7 blockers. The design of these molecules focused on maintaining potency at Nav1.7, improving selectivity over the hERG channel, and overcoming phospholipidosis observed with the initial leads. The structure-activity relationship (SAR) studies leading to the discovery of (R)-(3-fluoropyrrolidin-1-yl)(6-((5-(trifluoromethyl)pyridin-2-yl)oxy)quinolin-2-yl)methanone (ABBV-318) are described herein. ABBV-318 displayed robust in vivo efficacy in both inflammatory and neuropathic rodent models of pain. ABBV-318 also inhibited Nav1.8, another sodium channel isoform that is an active target for the development of new pain treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.