Abstract

Candida glabrata has emerged as an important opportunistic pathogen of invasive candidiasis due to increasing drug resistance. Targeting Pdr1-KIX interactions with small molecules represents a potential strategy for treating drug-resistant candidiasis. However, effective Pdr1-KIX inhibitors are rather limited, hindering the validation of target druggability. Here, new Pdr1-KIX inhibitors were designed and assayed. Particularly, compound B8 possessed a new chemical scaffold and exhibited potent KIX binding affinity, leading to enhanced synergistic efficacy with fluconazole to treat resistant C. glabrata infection (FICI = 0.28). Compound B8 acted by inhibiting the efflux pump and down-regulating resistance-associated genes through blocking the Pdr1-KIX interaction. Compound B8 exhibited excellent in vitro and in vivo antifungal potency in combination with fluconazole against azole-resistant C. glabrata. It also had direct antifungal effect to treat C. glabrata infection, suggesting new mechanisms of action independent of Pdr1-KIX inhibition. Therefore, compound B8 represents a promising lead compound for antifungal drug development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call