Abstract

M6A (N6-methyladenosine) plays a significant role in regulating RNA processing, splicing, nucleation, translation, and stability. AlkB homologue 5 (ALKBH5) is an Fe(II)/2-oxoglutarate (2-OG)-dependent dioxygenase that demethylates mono- or dimethylated adenosines. ALKBH5 can be regarded as an oncogenic factor for various human cancers. However, the discovery of potent and selective ALKBH5 inhibitors remains a challenge. We identified DDO-2728 as a novel and selective inhibitor of ALKBH5 by structure-based virtual screening and optimization. DDO-2728 was not a 2-oxoglutarate analogue and could selectively inhibit the demethylase activity of ALKBH5 over FTO. DDO-2728 increased the abundance of m6A modifications in AML cells, reduced the mRNA stability of TACC3, and inhibited cell cycle progression. Furthermore, DDO-2728 significantly suppressed tumor growth in the MV4-11 xenograft mouse model and showed a favorable safety profile. Collectively, our results highlight the development of a selective probe for ALKBH5 that will pave the way for the further study of ALKBH5 targeting therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call