Abstract

The COVID-19 pandemic caused by SARS-CoV-2 remains a global public health threat and has prompted the development of antiviral therapies. Artificial intelligence may be one of the strategies to facilitate drug development for emerging and re-emerging diseases. The main protease (Mpro) of SARS-CoV-2 is an attractive drug target due to its essential role in the virus life cycle and high conservation among SARS-CoVs. In this study, we used a data augmentation method to boost transfer learning model performance in screening for potential inhibitors of SARS-CoV-2 Mpro. This method appeared to outperform graph convolution neural network, random forest and Chemprop on an external test set. The fine-tuned model was used to screen for a natural compound library and a de novo generated compound library. By combination with other in silico analysis methods, a total of 27 compounds were selected for experimental validation of anti-Mpro activities. Among all the selected hits, two compounds (gyssypol acetic acid and hyperoside) displayed inhibitory effects against Mpro with IC50 values of 67.6 μM and 235.8 μM, respectively. The results obtained in this study may suggest an effective strategy of discovering potential therapeutic leads for SARS-CoV-2 and other coronaviruses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call