Abstract
In this research, a combined method of ligand-based pharmacophore (LBP), structure-based pharmacophore (SBP), and molecular docking was applied for virtual screening potential ATP-sensitive potassium channel (KATP) openers from Chinese herbs. LBP models were generated by 3D-QSAR pharmacophore(hypogen) program, based on the training set composed of 48 KATP agonists. The best LBP model consisted of one hydrogen-bond acceptor, one hydrogen-bond donor, one hydrophobic feature, one aromatic ring and five excluded volumes. Besides, the correlation coefficient of training set and test set, N, and CAI value of the model were 0.876 4, 0.705 8, 3.304, and 2.616 respectively. Meanwhile, SBP models were also generated based on a 3D structure of KATP (PMID: PM0079770). The best SBP model consisted of six hydrogen-bond acceptors, eight hydrogen-bond donors, seven hydrophobic features and eighteen excluded volumes. The corresponding N and CAI value were 2.200 and 2.017. Then, the best LBP model and SBP model were applied to identify potential KATP openers from Traditional Chinese Medicine Database(TCMD), respectively. 349 hits were obtained after analyzed by drug-likeness rules. Moreover, 12 compounds with high docking scores were reserved after molecular docking evaluation. Interestingly, part of the results had been verified as hypotensive active ingredients by literatures. Therefore, this study uncovers a specific target effect contained in TCMD, and provides candidates for new KATP openers' research.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.