Abstract

Evaluation and optimization of anthraquinone derivatives related to Reactive Blue 2 at P2X2 receptors yielded the first potent and selective P2X2 receptor antagonists. The compounds were tested for inhibition of ATP (10 μM) mediated currents in Xenopus oocytes expressing the rat P2X2 receptor. The most potent antagonists were sodium 1-amino-4-[3-(4,6-dichloro[1,3,5]triazine-2-ylamino)phenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (63, PSB-10211, IC(50) 86 nM) and disodium 1-amino-4-[3-(4,6-dichloro[1,3,5]triazine-2-ylamino)-4-sulfophenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (57, PSB-1011, IC(50) 79 nM). Compound 57 exhibited a competitive mechanism of action (pA(2) 7.49). It was >100-fold selective versus P2X4, P2X7, and several investigated P2Y receptor subtypes (P2Y(2,4,6,12)); selectivity versus P2X1 and P2X3 receptors was moderate (>5-fold). Compound 57 was >13-fold more potent at the homomeric P2X2 than at the heteromeric P2X2/3 receptor. Several anthraquinone derivatives were found to act as positive modulators of ATP effects at P2X2 receptors, for example, sodium 1-amino-4-(3-phenoxyphenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (51, PSB-10129, EC(50) 489 nM), which led to about a 3-fold increase in the ATP-elicited current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.