Abstract

BackgroundYellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures.Methodology/Principal FindingsHigh resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area.Conclusions/SignificanceThe worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries.

Highlights

  • Aedes aegypti (L.) is found throughout West Africa from sea-level to at least 1,220 m in Nigeria, and from the coastal swamp zone to the northern Guinea savannas

  • We observed a high resistance to DDT and moderate resistance to permethrin in both Ae. aegypti aegypti (Aaa) and Ae. aegypti formosus (Aaf) colonies collected in Ghana

  • High frequencies of F1534C mutations were found in the above mosquito colonies, and this was its first detection on the African continent

Read more

Summary

Introduction

Aedes aegypti (L.) is found throughout West Africa from sea-level to at least 1,220 m in Nigeria, and from the coastal swamp zone to the northern Guinea savannas. Yellow fever is endemic in Ghana and major outbreaks, which involved 319 cases and 79 deaths, occurred in 1969–1970 in the northern part of the country. Aedes aegpyti is one of the most important yellow fever vectors implicated in the Ghana outbreaks [3]. A recent seroprevalence survey in Ghana revealed the presence of IgM and IgG dengue antibodies in 3.2% and 21.6% of the children, respectively, with confirmed malaria. This indicated the possible co-infection of dengue fever and malaria, and previous exposure of the children to dengue virus [5]. Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.