Abstract

Dysregulation of cathepsin B, which involves the translocation of the enzyme from acidic pH lysosomes to the neutral pH cytosol, followed by the initiation of cell death and inflammation, occurs in numerous brain disorders. The wide difference in the acidic pH (4.6) of lysosomes compared to the neutral pH (7.2) of the cytosol suggests that screening at different pH conditions may identify pH-selective modulators of cathepsin B. Therefore, a collection of pure marine and plant natural product (NP) compounds, with synthetic compounds, was screened at pH 4.6 and pH 7.2 in cathepsin B assays, which led to the identification of GER-12 (Crossbyanol B) and GER-24 ((7Z,9Z,12Z)-octadeca-7,9,12-trien-5-ynoic acid) marine NP inhibitors at acidic pH but not at neutral pH. GER-12 was effective for the reversible inhibition of cathepsin B, with an IC50 of 3 μM. GER-24 had an IC50 of 16 μM and was found to be an irreversible inhibitor. These results show that NP screening at distinct biological pH conditions can lead to the identification of pH-selective cathepsin B modulators. These findings suggest that screening efforts for molecular probes and drug discovery may consider the biological pH environment of the target in the disease process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call