Abstract
We present a study of the correlations between spectral, timing properties and mass accretion rate observed in X-rays from the Galactic Black Hole (BH) binary GRS 1915+105 during the transition between hard and soft states. We analyze all transition episodes from this source observed with RXTE, coordinated with Ryle Radio Telescope (RT) observations. We show that broad-band energy spectra of GRS 1915+105 during all these spectral states can be adequately presented by two Bulk Motion Comptonization (BMC) components: a hard component (BMC1, photon index Gamma_1=1.7-3.0) with turnover at high energies and soft thermal component (BMC2, Gamma_2=2.7-4.2) with characteristic color temperature <1 keV, and the redskewed iron line (LAOR) component. We also present observable correlations between the index and the normalization of the disk "seed" component. The use of "seed" disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the soft and hard spectral components at values of 4.2 and 3 respectively. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to BH and that of soft component is due to matter accumulation in the transition layer when mass accretion rate increases. In addition to our spectral model components we also find a strong feature of "blackbody-like" bump which color temperature is about 4.5 keV in eight observations of the intermediate and soft states. We discuss a possible origin of this "blackbody-like" emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.