Abstract

We address the discovery of periodic patterns in sequence data. Building on prior work in this area, we present definitions and new methods for characterizing and identifying four types of periodic patterns. A unifying concept across the different types of periodic patterns we consider is the use of statistical variance to define periodicity. This lends itself to efficient variance-reduction algorithms for identifying periodic patterns. We motivate and test our approach using both extensive simulated sequences and real sequence data from online clickstream data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.