Abstract
Based on the multi-target-directed ligands (MTDLs) approach, two series of tryptanthrin derivatives with benzenesulfonamide substituents were evaluated as multifunctional agents for the treatment of Alzheimer's disease (AD). In vitro biological assays indicated most of the derivatives had good cholinesterase inhibitory activity and neuroprotective properties. Among them, the target compound 4h was considered as a mixed reversible dual inhibitor of acetylcholinesterase (AChE, IC50 = 0.13 ± 0.04 μM) and butyrylcholinesterase (BuChE, IC50 = 6.11 ± 0.15 μM). And it could also potentially prevent the generation of amyloid plaques by inhibiting self-induced Aβ aggregation (63.16 ± 2.33%). Molecular docking studies were used to explore the interactions of AChE, BuChE, and Aβ. Furthermore, possessing significant anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50 = 0.62 ± 0.07 μM, 1.78 ± 0.21 μM, 1.31 ± 0.28 μM, respectively) reduced ROS production, and chelated biometals were also found in compound 4h. Further studies showed that 4h had proper blood-brain barrier (BBB) permeability and suitable in vitro metabolic stability. In in vivo study, 4h effectively ameliorated the learning and memory impairment of the scopolamine-induced AD mice model. These findings suggested that 4h may be a promising compound for further development as a multifunctional agent for the treatment of AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.