Abstract
Penicillin-binding protein 2a (PBP2a) is an essential protein involved in the resistance to β-lactam antibiotics acquired by methicillin-resistant Staphylococcus aureus (MRSA) and is a potential antibacterial target. In the current study, we employed a strategy that combined virtual screening with biological evaluation to discover novel inhibitors of PBP2a. In this investigation, a hybrid virtual screening method, consisting of drug-likeness evaluation (Lipinski’s Rule of Five and ADMET) and rigid (LibDock) and semi-flexible (CDOCKER) docking-based virtual screenings, was used for retrieving novel PBP2a inhibitors from commercially available chemical databases. 11 compounds were selected from the final hits and subsequently shifted to experimental studies. Among them, Hit 2, Hit 3, and Hit 10 exhibited excellent anti-MRSA ATCC 33591 activity and weak toxicity in vitro. The affinity of the three compounds to bind to PBP2a was further confirmed by surface plasmon resonance (SPR) experiments and molecular dynamics (MD) simulation. An inter-complex interaction study showed that all hit compounds adapted well to the allosteric site of the PBP2a protein. In addition, Hit 2 (with best binding affinity to PBP2a, KD = 1.29 × 10−7 M) significantly inhibits proliferation of MRSA clinical isolates. Together, the 3 hit compounds, especially Hit 2, may be potential non-β-lactam antibiotics against MRSA and the work will provide clues for the future development of specific compounds that block the interaction of PBP2a with their targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.